Purcell effect with microwave drive: Suppression of qubit relaxation rate
نویسندگان
چکیده
We analyze the Purcell relaxation rate of a superconducting qubit coupled to a resonator, which is coupled to a transmission line and pumped by an external microwave drive. Considering the typical regime of the qubit measurement, we focus on the case when the qubit frequency is significantly detuned from the resonator frequency. Surprisingly, the Purcell rate decreases when the strength of the microwave drive is increased. This suppression becomes significant in the nonlinear regime. In the presence of the microwave drive, the loss of photons to the transmission line also causes excitation of the qubit; however, the excitation rate is typically much smaller than the relaxation rate. Our analysis also applies to a more general case of a two-level quantum system coupled to a cavity.
منابع مشابه
Quantum theory of a bandpass Purcell filter for qubit readout
The measurement fidelity of superconducting transmon and Xmon qubits is partially limited by the qubit energy relaxation through the resonator into the transmission line, which is also known as the Purcell effect. One way to suppress this energy relaxation is to employ a filter which impedes microwave propagation at the qubit frequency. We present semiclassical and quantum analyses for the band...
متن کاملExperimental Uhrig dynamical decoupling using trapped ions
We present a detailed experimental study of the Uhrig dynamical decoupling UDD sequence in a variety of noise environments. Our qubit system consists of a crystalline array of Be+ ions confined in a Penning trap. We use an electron-spin-flip transition as our qubit manifold and drive qubit rotations using a 124 GHz microwave system. We study the effect of the UDD sequence in mitigating phase er...
متن کاملQubit measurement error from coupling with a detuned neighbor in circuit QED
In modern circuit QED architectures, superconducting transmon qubits are measured via the state-dependent phase and amplitude shift of a microwave field leaking from a coupled resonator. Determining this shift requires integrating the field quadratures for a nonzero duration, which can permit unwanted concurrent evolution. Here we investigate such dynamical degradation of the measurement fideli...
متن کاملFully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies
A register of quantum bits with fixed transition frequencies and weakly coupled to one another through simple linear circuit elements is an experimentally minimal architecture for a small-scale superconducting quantum information processor. Presently, the known schemes for implementing two-qubit gates in this system require microwave signals having amplitudes and frequencies precisely tuned to ...
متن کاملCatch-disperse-release readout for superconducting qubits.
We analyze a single-shot readout for superconducting qubits via the controlled catch, dispersion, and release of a microwave field. A tunable coupler is used to decouple the microwave resonator from the transmission line during the dispersive qubit-resonator interaction, thus circumventing damping from the Purcell effect. We show that, if the qubit frequency tuning is sufficiently adiabatic, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014